CHES 2011 Nara, Japan Sep. 28 - Oct. 1

Variety Uniqueness Enhancement of PUF Responses Based on the Locations of Random Outputting RS Latches

Fujitsu Laboratories Ltd., Japan Dai Yamamoto

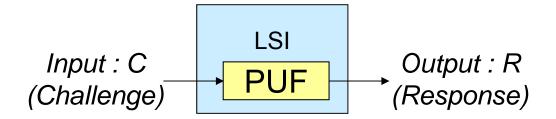
Collaborator:

Kazuo Sakiyama, Mitsugu Iwamoto, Kazuo Ohta (The University of Electro-Communications) Takao Ochiai, Masahiko Takenaka, Kouichi Itoh (Fujitsu Laboratories Ltd.)

Introduction

- Counterfeit semiconductor has expanded recently.
- Reasons why the counterfeit is evil
 - Monetary damages of original manufacturer
 - Drop in sales
 - Increase costs of analysis of the counterfeit
 - Losing the trust of customers who mistake the counterfeit as the original due to poor quality of the counterfeit
 - Risks of accidents threatening our lives
 - Electric vehicle, medical device, smart grid, etc

Anti-counterfeiting technologies are required.
 PUF (Physical Unclonable Function) as a solution



PUF (Physical Unclonable Function)

FUJITSU

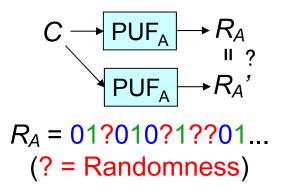
Focus on PUFs on LSIs

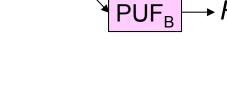
PUFs have single input and single output.

Outputs depend on process variations of each individual LSIs.

- Slight difference of wire/gate delay and drive capability etc.
- Analysis and copy are hard.

Counterfeiting PUFs is quite difficult.


Requirements of PUFs [1/2]


Uniqueness

- Independence among multiple PUFs of responses R to the same challenge C
- Hamming distance (HD) between 128-bit R_A and R_B
 - Ideal HD is 64 bits (= unpredictable)
- Important to realize high Uniqueness

Reliability

- Consistency of PUF CRPs for repeated measurements
- Lack of consistency due to "randomness" in R
- Removing randomness keeps Reliability, while reduces the "Variety" of R.
- Important to keep Reliability and Variety

Variety

- The Variety (pattern / number) of responses R
 - 128-bit *R* has 2¹²⁸ Variety ideally.
- Reasons why larger Variety is desirable
 - e.g. 192-bit *R* is more secure than 128-bit *R*.
 - Larger Variety, more unpredictable
- 128-bit *R* includes randomness.
 - Ideal Variety is 2¹²⁸.
 - Actual Variety is much less than 2¹²⁸.

Important to enhance the ideal Variety of responses *R*

Overview of This Work

FUĴITSU

Goal

- Enhance the Variety while keeping Uniqueness & Reliability
- Focus on Butterfly PUF (BPUF)
- Contribution
 - Use of location information of RS latches outputting random values
 - Propose method to use the location information
- Experimental results by using FPGAs
 - Variety increases 2¹⁹⁶ » 2¹²⁸
 - Using 128 RS latches

Introduction (previously-explained)

Requirements of PUFs (Uniqueness, Reliability, Variety)

Background Art

RS latch (= A component of BPUF)

BPUF

Proposed methods to enhance Variety

Evaluation results by using FPGA

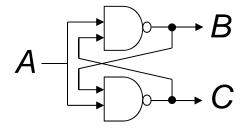
- Uniqueness and Reliability
- Variety

Introduction (previously-explained)

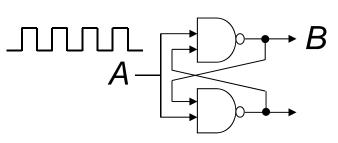
Requirements of PUFs (Uniqueness, Reliability, Variety)

Background Art
 RS latch (= A component of BPUF)
 BPUF

Proposed methods to enhance Variety

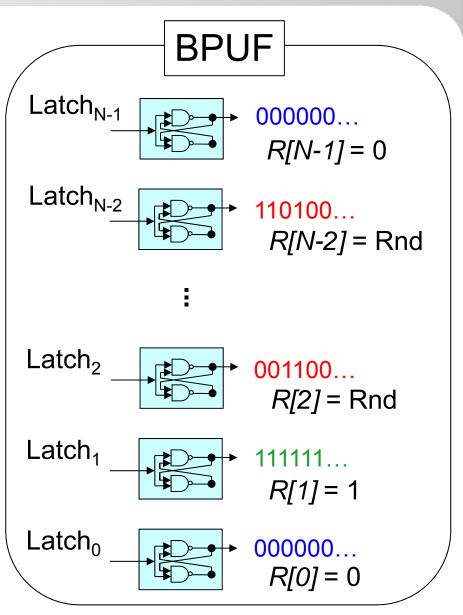

Evaluation results by using FPGAUniqueness and Reliability

Variety


RS Latch (A component of BPUF)

- Stable state with (B, C)=(1,1) when A=0
- A changing from 0 to 1 (rising edge)
 - Stable state with either (B, C) = (1,0) or (0,1)
 - Due to the difference of drive capabilities of the two NAND gates and the wire length

- When a clock signal is applied to input A, B from RS latches fall into 3 patterns:
 - Always 0's
 - Always 1's
 - A mixture of 0's and 1's (Random number)



{= 000...0000 = 111...1111 = 101...1011(Random)

N-bit Butterfly PUF (BPUF)

- Generate N-bit response R
 Using N RS latches
- RS latches outputting random numbers (= "random latches")
- Random latches cause some problems.
 - Random latches cannot be used for responses.
 - Outputs from random latches are unstable.

Problems on Variety from random latches

Unable to use random latches for responses

Variety decreases as random latches increase.

- e.g. BPUF with 128 RS latches has 40 random latches.
- Reduced from 2¹²⁸ to 2⁸⁸⁽⁼¹²⁸⁻⁴⁰⁾
- Reducing unpredictability

Random latches reduce the Variety

Introduction (previously-explained)

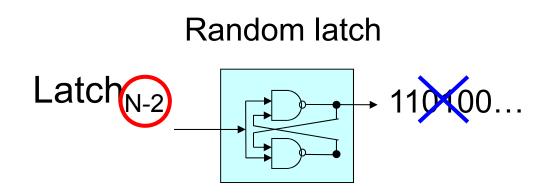
Requirements of PUFs (Uniqueness, Reliability, Variety)

Background Art
 RS latch (= A component of BPUF)
 BPUF

Proposed methods to enhance Variety

Evaluation results by using FPGA

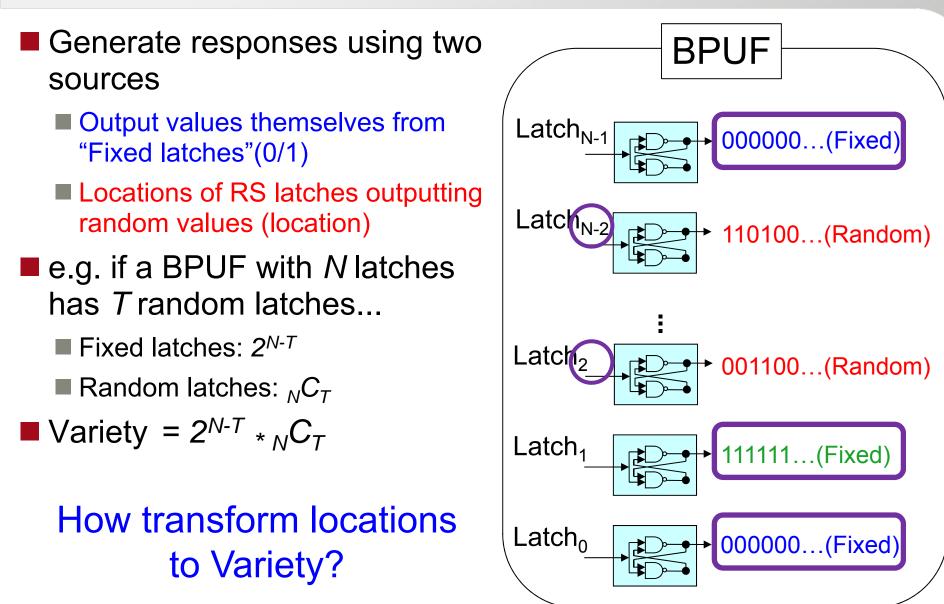
Uniqueness and Reliability


Variety

Our Core Idea

(Conventional) Derive entropy from outputs

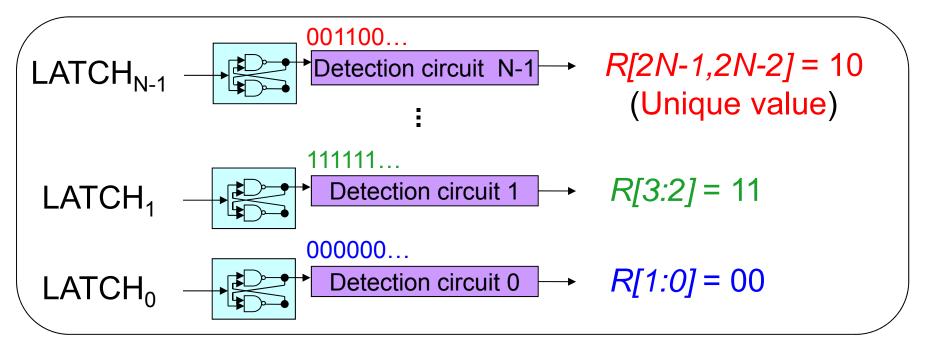
Need to discard random latches


(Our) Derive entropy from location information

Entropy from location information increases as random latches increase

- Enhance the Variety while keeping Uniqueness & Reliability
 - Location info. of random latches: Almost stable

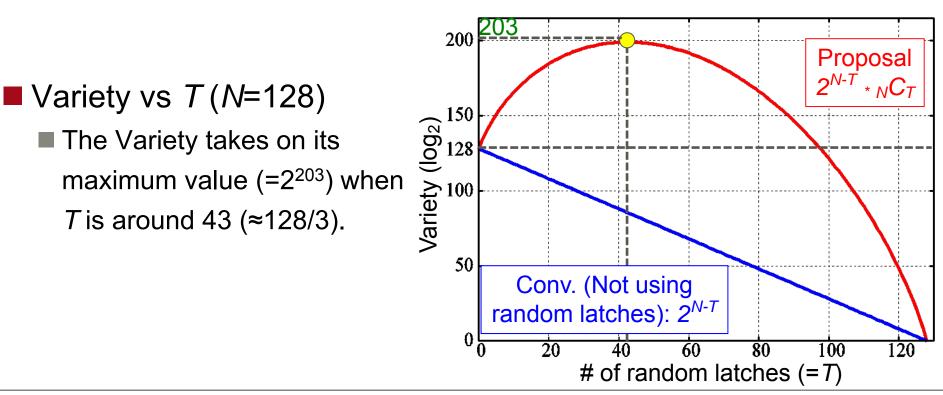
Use of Locations of Random Latches



Proposed method

- Method of transforming locations to responses
 - Compact detection CKT (28 gates) located after a RS latch
 - The CKT generates ternary values (00/10/11) based on output values (0/1/random).
 - •Random values → Third unique value '10'

Total Variety = 3^N regarding outputs as 3 types (0/1/random)



Estimated Variety using proposed method Fujinsu

Total Variety = 3^N

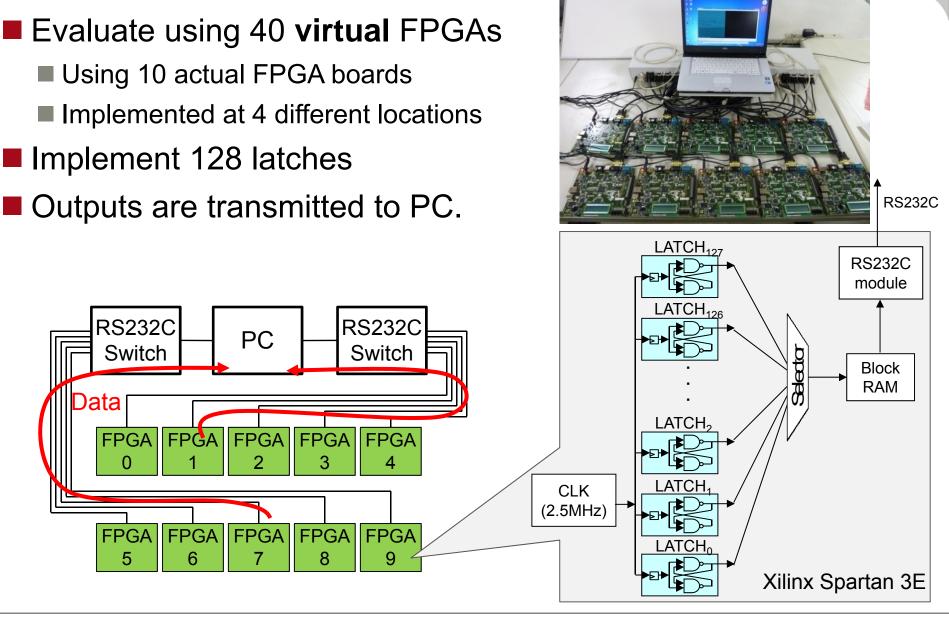
of random latches (=T) is determined by PUF properties.

- Variety for given $T = 2^{N-T} * {}_{N}C_{T} < 3^{N}$
 - *T*-th term of the binomial expansion of $(2+1)^N = 3^N$
 - The same as the previous estimate

Introduction (previously-explained)

Requirements of PUFs (Uniqueness, Reliability, Variety)

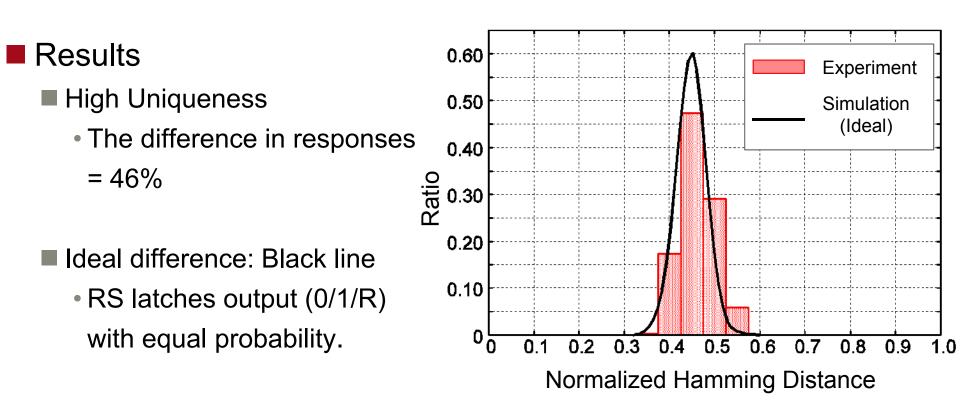
Background Art
 RS latch (= A component of BPUF)


■ RS laten (– A component of ■ BPUF

Proposed methods to enhance Variety

Evaluation results by using FPGA
 Uniqueness and Reliability
 Variety

Experimental Environment

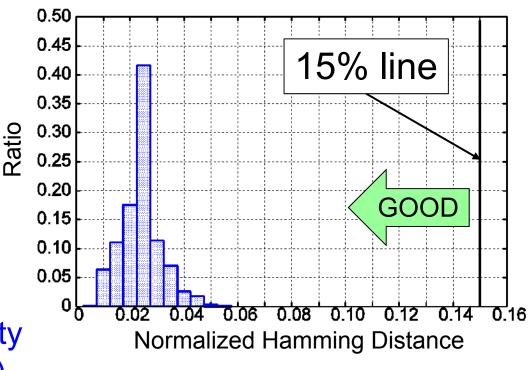


Evaluation: Uniqueness

Uniqueness: 2 PUFs generate the different responses?

- Generate a total of 40 responses using all 40 FPGAs
 - One response per FPGA
- Normalized hamming distance between two arbitrary responses among the 40 responses (₄₀C₂ = 780 combinations).

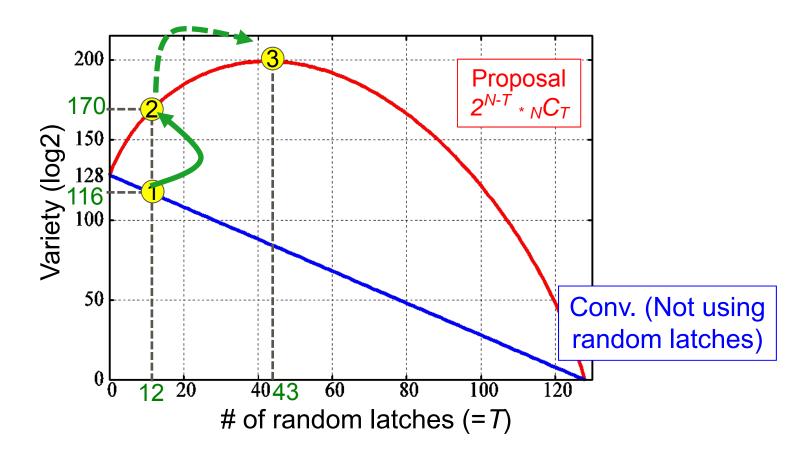
Evaluation: Reliability


Reliability = A PUF always generates the same response?

- Generate 40 responses repeatedly using only a specific FPGA
- Normalized HD between two arbitrary responses among the 40 responses (= the same as Uniqueness evaluation).

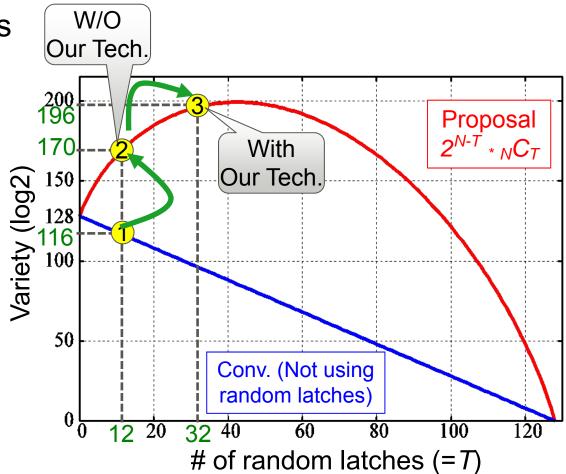
Results

- High Reliability
 - Average error rate
 - = 2.4% « 15%
- Redundant data of ECC
 - Reasonable size


```
Proposed PUF gives
high Uniqueness & Reliability
(satisfy PUF requirements)
```


Evaluation: Variety [1/2]

- 1 Conventional method (Not using random latches): 2¹¹⁶
- 2 Proposed method: 2¹⁷⁰
- **3** Proposed method (Best Variety)



Evaluation: Variety [2/2]

- Propose new implementation technique
 - Improve the effectiveness of proposed method
 - For details, please see proceeding.
- Ave. # of random latches
 - A BPUF with 128 latches
 - W/O our tech. ≈ 12
 - With our tech. ≈ 32
- ³ Proposed method with our technique : 2¹⁹⁶

Proposed methods dramatically enhance Variety.

Introduction (previously-explained)

Requirements of PUFs (Uniqueness, Reliability, Variety)

Background Art
 RS latch (= A component of BPUF)
 BPUF

Proposed methods to enhance Variety

Evaluation results by using FPGA
 Uniqueness and Reliability
 Variety

Summary

Our goal

Enhance the Variety while keeping Uniqueness & Reliability

Propose method

- Use Entropy from Location information of random latches
- Generate ternary values (00/10/11) from output values (0/1/random)

Experimental results with FPGAs

■ Variety increases from 2¹¹⁶ to 2¹⁹⁶ with proposed methods.

Future Work

- Evaluation of voltage resistance
- Application of proposals to other kinds of PUFs
 - Improve not only BPUF

FUJTSU

shaping tomorrow with you